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Abstract 
Although mitogen-inducible gene 6 (MIG6) is highly expressed in vascular endothelial cells, it remains unknown whether 
MIG6 affects vascular permeability. Here, we show for the first time a critical role of MIG6 in limiting vascular permeabil-
ity. We unveil that genetic deletion of Mig6 in mice markedly increased VEGFA-induced vascular permeability, and MIG6 
knockdown impaired endothelial barrier function. Mechanistically, we reveal that MIG6 inhibits VEGFR2 phosphorylation 
by binding to the VEGFR2 kinase domain 2, and MIG6 knockdown increases the downstream signaling of VEGFR2 by 
enhancing phosphorylation of PLCγ1 and eNOS. Moreover, MIG6 knockdown disrupted the balance between RAC1 and 
RHOA GTPase activation, leading to endothelial cell barrier breakdown and the elevation of vascular permeability. Our find-
ings demonstrate an essential role of MIG6 in maintaining endothelial cell barrier integrity and point to potential therapeutic 
implications of MIG6 in the treatment of diseases involving vascular permeability.

Graphical abstract
Xing et al. (2022) investigated the critical role of MIG6 in vascular permeability. MIG6 deficiency promotes VEGFA-induced 
vascular permeability via activation of PLCγ1-Ca2+-eNOS signaling and perturbation of the balance in RAC1/RHOA activa-
tion, resulting in endothelial barrier disruption.
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Introduction

Endothelial cells (EC) line the luminal side of blood ves-
sels and form a semi-permeable barrier between blood 
and interstitial space (Aird 2007; Boulanger 2016; Dalal 
et al. 2020). This selective barrier is a highly complex and 
orchestrated structure that controls movement of electro-
lytes, proteins, and cells across intact endothelial barrier 
via transcellular and paracellular pathways. The disruption 
of endothelial barrier causes aberrant elevation of vascu-
lar permeability, which is highly prevalent in pathological 
conditions such as cancer, stroke, and diabetic retinopathy 
(Bates 2010; Park-Windhol and D'Amore 2016). EC bar-
rier function is modulated by different types of EC junc-
tions such as gap junctions (GJ), tight junctions (TJ), and 
adherens junctions (AJ) (Komarova et al. 2017; Radeva 
and Waschke 2018). In particular, stability of endothelial 
cell–cell contacts and permeability for large molecules are 
provided by AJ. VE-cadherin is considered to be the main 
component of AJ integrity (Duong and Vestweber 2020), 
and  Ca2+-dependent-homophilic binding of VE-cadherin 
to endothelial cell–cell junction forms zipper-like AJ 
along the cell contacts. Endothelial nitric oxide synthase 
(eNOS) also plays a critical role in the regulation of these 
intercellular junctions by contributing to the maintenance 
of endothelial barrier integrity (Komarova et al. 2017). 
Particularly, cytoskeletal reorganization accompanying 
endothelial permeability alterations is linked to eNOS acti-
vation (Di Lorenzo et al. 2013; Flentje et al. 2019; Su et al. 
2005). Moreover, multiple VEGFA-mediated pathways 
involving SRC, AMP-activated protein kinase (AMPK), 
focal adhesion kinase (FAK), and phospholipase C gamma 
(PLCγ) activation are known to affect the EC barrier and 
vascular permeability (Dragoni et al. 2021; Komarova et al. 
2017).

VEGFR2 undergoes phosphorylation at various tyrosine 
(Tyr) and serine/threonine (Ser/Thr) residues. There are 
major Tyr phosphorylation sites on VEGFR2, which par-
ticipate in VEGF responses to regulate EC proliferation, 
migration, permeability, and survival (Shaik et al. 2020; 
Simons et al. 2016; Wang et al. 2020). Of note, phospho-
rylated Tyr951 (pY951) serves as a binding site for T-cell 
specific adaptor protein (TSad) to control EC migration 
and permeability, and both pY1054 and pY1059 located in 
the activation loop of kinase domain 2 play critical roles 
for kinase activity (Koch and Claesson-Welsh 2012; Sun 
et al. 2012). Additionally, pY1175 and pY1214 also create 
the binding sites for PLCγ1, SHB, SHC, GRB2, FYN, and 

NCK to activate downstream signaling molecules (Koch and 
Claesson-Welsh 2012). Therefore, VEGFR2 phosphoryla-
tion is the key process to recruit the signaling molecules to 
VEGFR2, which can induce various biological responses.

Mitogen-inducible gene 6 (MIG6) is a ubiquitously 
expressed adaptor protein which was identified as a glu-
cocorticoid-induced transcript from the rat liver (Lee 
et al. 1985; Xu and Li 2021). MIG6 is induced by a wide 
variety of extracellular stimuli including various growth 
factors, hormones, and cellular stress. It contains several 
domains for protein–protein interaction which is function-
ally critical for converting diverse signals to appropriate 
cellular responses. Importantly, MIG6 has been known 
as a negative feedback regulator of EGFR to restrain its 
oncogenic activity (Ferby et al. 2006; Hackel Peter et al. 
2001). Moreover, it is also involved in many pathological 
conditions such as diabetes, cardiovascular diseases, pso-
riasis, and tumor progression (Xu and Li 2021). We have 
recently reported that MIG6 has anti-angiogenic effects 
in retinal angiogenesis and hypoxia-induced retinal neo-
vascularization (Liu et al. 2021). In the aforementioned 
study, we demonstrated that Mig6 knockout mice promote 
retinal angiogenesis and overexpression of MIG6 in ECs 
decreases microvessel outgrowth. This anti-angiogenic 
effect of MIG6 is mediated by binding to SHC1 and inhib-
iting its phosphorylation. Although we revealed that MIG6 
has the anti-angiogenic effect, it remains unknown whether 
MIG6 can inhibit VEGFA-induced VEGFR2 signaling, 
which would subsequently affect vascular permeability 
along with other VEGFR2-mediated biological responses.

In this study, using Mig6 knockout mice and cul-
tured endothelial cells, we examined the effect of MIG6 
modulation on vascular permeability. We show that 
MIG6 is a critical regulator in maintaining the integrity 
of endothelial barrier. Mig6 knockout mice enhanced 
VEGFA-induced vascular leakage, and EC permeability 
was compromised by MIG6 knockdown. Importantly, 
MIG6 binds to the VEGFR2 kinase domain, and tyros-
ine phosphorylation on VEGFR2 is increased in MIG6 
knockdown ECs. Notably, phosphorylation of PLCγ1 
and eNOS was increased with a transient rise in  Ca2+ in 
MIG6 knockdown ECs, suggesting that MIG6-mediated 
modulation of VEGFR2 phosphorylation negatively regu-
lates the downstream effectors of the VEGFR2 signal-
ing pathway. Moreover, MIG6 knockdown interrupted 
the fine balance between RHOA and RAC1 activation, 
leading to endothelial barrier breakdown and increased 
vascular permeability. These results altogether suggest 
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that MIG6 is a critical molecule in the maintenance of 
EC barrier homeostasis.

Materials and methods

Mice

The Mig6-deficient mice were described previously 
(Zhang et al. 2005). All animal experiments were reviewed 
and approved by the Animal Use and Care Committee of 
Zhongshan Ophthalmic Center, Sun Yat-sen University. 
All animal procedures were done in compliance with the 
approved guideline.

Cell culture and reagents

Primary human umbilical vein endothelial cells (HUVECs) 
were purchased from Angio-Proteomie (Boston, MA, USA). 
HUVECs were cultured in endothelial cell medium (Scien-
Cell Research, Carlsbad, CA, USA) containing endothelial 
cell growth supplement (ECGS), 5% FBS, and penicillin/
streptomycin (ScienCell Research). VEGFR inhibitor Axi-
tinib (S1005, Selleck Chemicals, Shanghai, China), PLCγ1 
inhibitor U73122 (S8011, Selleck Chemicals, Shanghai, 
China), and L-NG-nitroarginine methyl ester (L-NAME; 
S2877, Selleck Chemicals, Shanghai, China) were reconsti-
tuted in DMSO before use. Recombinant human VEGFA165 
protein and histamine were purchased from PeproTech (100-
20, Rocky Hill, NJ, USA) and MedChem Express (HY-
B1204, Shanghai, China), respectively.

Miles assay

Mice were subjected to intraperitoneal injection with 
pyrilamine maleate salt (4 mg/kg body weight in 0.9% 
saline, Selleckchem, Houston, TX, USA) to inhibit hista-
mine release. Mice were injected with 200 μl Evans blue 
(0.5% Evans blue in sterile saline, Sigma) in the lateral tail 
vein and incubated for 1 h. VEGFA165 (50 ng in 10 μl/site) 
or BSA in sterile saline was injected intradermally and incu-
bated for 1 h. Mice were euthanized by cervical dislocation, 
and then, the ear was dissected and dried at 56°C. After 
incubation with deionized formamide at 56ºC for overnight, 
the amount of Evans blue in each tissue sample was quanti-
fied by spectrometry at 620 nm (Molecular Devices).

siRNA knockdown and viral infection of endothelial 
cells

For gene knockdown, ECs were transfected with siRNAs 
for the indicated genes or non-targeting scrambled nega-
tive control (Ribobio, Guangzhou, China) using ESCORT 
transfection reagent (L3287, Sigma). The siRNA sequences 
are listed in Supplementary Table 1. For adenoviral infec-
tion, ECs were infected with Ad-MIG6 (VH894726, Vigene 
Biosciences, Rockville, MD, USA) or Ad-GFP (CV10001, 
Vigene Biosciences) at an MOI of 10 for 48 h. Similarly, len-
tiviral transduction of ECs was performed with lenti-RAC1 
(Q61L) (CH854034) or lenti-GFP (CV10002) purchased 
from Vigene Biosciences.

Antibodies for western blots

Antibodies used in western blots are as follows: β-actin 
(RM2001, Ray Antibody Biotech, Beijing, China), α-tubulin 
(RM2007, Ray Antibody Biotech, Beijing, China), MIG6 
(WH0054206M1, Sigma), pTyr1175-VEGFR2 (2478, 
Cell Signaling), pTyr951-VEGFR2 (2471, Cell Signaling), 
pTyr1054/59-VEGFR2 (44-1047G, Invitrogen), pTyr1214-
VEGFR2 (AF1766, R&D Systems), VEGFR2 (9698, Cell 
Signaling), pTyr783-PLCγ1 (2821S, Cell Signaling), PLCγ1 
(5690S, Cell Signaling), pSer1177-eNOS (9570, Cell Sign-
aling), and eNOS (32027, Cell Signaling).

Construction of GST‑MIG6 and GST‑truncated 
VEGFR2 domains

The cDNAs encoding human MIG6 and VEGFR2 in 
pCMV3 vector were obtained from SinoBiological (Bei-
jing, China) and subcloned into pGEX-4 T-1 vector (GE 
Healthcare Life Sciences). The GST-fused truncated 
VEGFR2 domains, GST-cyto (786Leu-1356Val), GST-JX 
(786Leu-833Arg), GST-JX + KD1 (786Leu-929Arg), GST-
KI (930Ser-1000Leu), GST-KI + KD2 (930Ser-1162Asn), 
and GST-C-ter (1162Asn-1356Val), were generated using 
a Quickchange site-directed mutagenesis kit (Agilent Tech-
nologies) according to the manufacturer’s instructions. The 
GST-MIG6 or truncated GST-VEGFR2 constructs were gen-
erated by PCR-based accurate synthesis with oligonucleo-
tides (Supplementary Table 1), followed by sequencing for 
construct verification. The constructs were transformed into 
E. coli and the fusion proteins were purified by glutathione 
agarose resin.

GST pull‑down assay

For GST pull-down assay, 2 μg of GST-MIG6 fusion protein 
or 5 μg of each GST-VEGFR2 fusion proteins were added to 
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30 μl of glutathione agarose beads (sc-2009, Santa Cruz) and 
incubated at 4°C for 2 h. The protein bound-beads were then 
washed three times with NP40 buffer (P0013F, Beyotime, 
Shanghai, China) and incubated with the lysates of HUVECs 
for GST-MIG6, or lysates of HEK293T cells overexpressing 
Flag-tagged MIG6 for GST-VEGFR2 at 4°C for 2 h. The 
beads were then washed with NP40 buffer and subjected to 
western blot analysis.

Antibody feeding assay

MIG6 knockdown HUVECs were confluent and starved for 
4 h with serum-free media. Cells were incubated with an 
anti-VEGFR2 antibody (1:75 dilution, AF357, R&D Sys-
tems) at 4°C for 20 min with 0.5% FBS and rinsed with 
cold PBS. Cells were then incubated with serum-free media 
containing VEGFA (20 ng/ml) at 37°C for 30 min and rinsed 
twice for 2 min with cold PBS (pH 2.5). After fixation with 
4% paraformaldehyde for 10 min at room temperature and 
permeabilization with 0.1% Triton X-100/PBS, cells were 
incubated with anti-Goat Alexa488 antibody (1:200 dilu-
tion, A-11055, Invitrogen) in 1% BSA/PBS for 1 h at room 
temperature. DAPI (D3571, Thermo Fisher Scientific) was 
used for nuclear staining. Internalized VEGFR2 fluorescent 
signals were quantified with ImageJ (Bethesda, NIH, USA) 
and normalized by the surface VEGFR2 fluorescent signals 
measured before stimulation with VEGFA.

VEGFR2 biotinylation assay

Confluent cultures of MIG6 knockdown HUVECs were 
starved for 4 h with serum-free media. Cells were then incu-
bated with EZ-Link-NHS-biotin (Thermo Fisher Scientific) 
in PBS for 45 min at 4°C. The reaction was quenched with 
50 mM glycine in cold PBS. Then, cells were incubated with 
serum-free media containing VEGFA (20 ng/ml) at 37°C 
for indicated time points and rinsed with cold PBS twice 
for 15 min. Cell surface biotin was cleaved off by incubat-
ing the cells with 200 mM 2-mercaptoethane sulphonic acid 
(MESNA, Sigma) for 10 min on ice. After washing, cells 
were lysed with NP40 buffer and precipitated with streptavi-
din magnetic beads (Thermo Fisher Scientific) at 4°C over-
night. The beads were then washed with NP40 buffer and 
subjected to western blot analysis for internalized VEGFR2.

Calcium assay

MIG6 knockdown ECs were plated in EC medium with 40,000 
cells/100 μl/well in a 96-well plate for overnight. An equal 
volume (100 μl/well) of Fluo-8 dye (ab112129, Abcam) in 
serum-free EC media was added. After incubation for 1 h, 
HHBS containing VEGFA (20 ng/ml) was added for 0, 2.5, 

5, 7.5, 10, and 12.5 min. The calcium flux was monitored and 
recorded by the fluorescence intensity at Ex/Em = 490/525 nm.

Electrical cell impedance sensing (ECIS)

MIG6 knockdown ECs were seeded onto gelatin-coated 
8W10E ECIS array (Applied Biophysics, MA, USA) and 
allowed to reach confluence overnight. Following low serum 
starvation (1% FBS) for 3 h, permeability was measured 
after VEGFA treatment (50 ng/ml) using multiple frequency/
time (MFT) setting. MIG6 expression was confirmed by 
western blot analysis.

RhoGTPase activation assay

HUVECs treated with siControl and siMIG6 were lysed 
with lysis buffer (30303, NewEast Biosciences, Malvern, 
PA, USA). The pre-cleared cell lysates were incubated with 
a configuration-specific, active Rac (80501, NewEast Bio-
sciences) or RhoA (80601, NewEast Biosciences) monoclo-
nal antibody, and then, protein A/G agarose beads (30301, 
NewEast Biosciences) were added and incubated at 4°C for 
1 h. Beads were washed three times, and then the bound 
proteins were eluted. The eluted samples were subjected 
to western blot analysis. Antibodies used in western blot 
for active RhoGTPases were: Rac1 (26005, NewEast Bio-
sciences) and RhoA (2117T, Cell Signaling).

In vitro permeability assay

HUVECs were grown on Matrigel (2 Matrigel:1 EC media)-
coated inserts (0.4 µm polycarbonate membrane) of Tran-
swell Permeable Supports (3413, Corning, NY, USA). After 
ECs became confluent, 10 µg/ml of fluorescein isothiocy-
anate (FITC)-dextran (70 kDa, Thermo Fisher Scientific) 
with VEGFA (50 ng/ml) was added into the upper chamber. 
Following the treatment with VEGFA for 1 h, 10 µl ali-
quots of media were removed from the lower chamber and 
diluted in 90 µl  H2O in a 96-well plate. The fluorescence 
intensity with excitation at 485 nm and emission at 535 nm 
was measured by a microplate spectrofluorometer (Tecan, 
Switzerland).

Statistical analysis

Comparisons between two groups were analyzed using 
paired or unpaired Student’s t-test (two-tailed), while sta-
tistical significance among four or higher number of groups 
was determined by one-way or two-way ANOVA with Sidak 
or Tukey multiple comparison test using GraphPad Prism 
(GraphPad Software, La Jolla, CA, USA). Data are presented 
as mean ± SEM from at least three independent experiments, 
with p < 0.05 being considered statistically significant.
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Results

Vascular permeability is increased in Mig6 knockout 
mice and endothelial barrier is compromised 
by MIG6 knockdown in vitro

Although MIG6 plays critical roles in angiogenesis, it 
remains unknown whether it regulates vascular permeabil-
ity. We therefore utilized Mig6 knockout mice to examine 
this role. To investigate VEGFA-induced vascular per-
meability, we employed the Miles assay which measures 
leakage of Evans blue dye bound to albumin in mouse 
ears after intradermal injection of VEGFA. Increased dye 

leakage was observed in wild type (WT) mice after VEGFA 
injection compared with the BSA control group (Fig. 1a, 
top). Notably, BSA-injected Mig6 knockout mice showed 
a higher level of basal permeability compared with WT 
mice, and VEGFA-injected Mig6 knockout mice displayed 
a remarkable enhancement of vascular leakage (Fig. 1a, 
bottom). Excised mouse ears injected with VEGFA showed 
VEGFA-induced vessel leakage for both WT and Mig6 
knockout mice, but quantification analysis of Evans blue 
leakage revealed that vascular permeability was significantly 
increased in VEGFA-injected Mig6 knockout mice (Fig. 1b, 
c). These results suggest that MIG6 may play a vital role in 
the maintenance of vascular integrity and alteration of MIG6 

Fig. 1  Vascular permeability 
is increased in Mig6 knockout 
mice and endothelial barrier 
is compromised by MIG6 
knockdown. (a) Representa-
tive images of WT (top) and 
Mig6−/− (bottom) mouse 
showing Evans blue leakage, 
after treatment with 50 ng/ml of 
VEGFA (left) or BSA (right) for 
1 h. (b) Images of Evans blue 
leakage in excised ears of WT 
and Mig6−/− mouse. (c) Quan-
tification of Evans blue leakage 
in ear tissues. Evans blue dye 
was extracted from ear skin of 
WT and Mig6−/− mice to read 
an absorbance (n = 3–5). (d) 
Histamine (100 μM) or VEGFA 
(50 ng/ml)-induced EC perme-
ability in siControl or siMIG6-
treated HUVECs (n = 4). (e) 
Normalized resistance of 
siControl or siMIG6-treated 
ECs after stimulation with 
VEGFA. HUVECs were treated 
with siControl or siMIG6, and 
grown to confluence on gelatin-
coated electrode arrays. After 
low serum starvation for 3 h, 
EC monolayer was stimulated 
with VEGFA (50 ng/ml) and 
TEER was measured by ECIS 
at a frequency of 4000 Hz. 
One-way ANOVA with Sidak 
multiple comparison test (c, d) 
and unpaired Student’s t-test 
(e) were performed. Data are 
presented as mean ± SEM. 
* p < 0.05, ** p < 0.01, *** 
p < 0.001, **** p < 0.0001, NS: 
not statistically significant
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expression may lead to disruption of the blood vessel barrier. 
Given the enhanced level of vascular leakage observed in 
VEGFA-injected Mig6 knockout mice, we next examined 
whether endothelial barrier is affected by MIG6 in human 
ECs. To address this, we evaluated EC permeability in vitro 
after MIG6 knockdown in ECs. The MIG6 knockdown ECs 
were validated first for the knockdown efficiency and respon-
siveness to VEGFA stimulation before the transwell perme-
ability assay (Supplementary Fig. 1). The amount of FITC-
dextran diffusing through the EC monolayer was further 
increased in MIG6 knockdown ECs treated with VEGFA 
whereas histamine-induced permeability was not signifi-
cantly different between control and MIG6 knockdown 
cells (Fig. 1d), suggesting that MIG6 may not be involved in 
inflammation-induced permeability. The increased VEGFA-
induced permeability in MIG6 knockdown cells was through 
enhanced VEGFR2 activation since pretreatment with 

Axitinib, a tyrosine kinase inhibitor that selectively targets 
VEGFRs (Liu et al. 2022), attenuated the increase in perme-
ability in MIG6 knockdown cells (Supplementary Fig. 2a). 
EC barrier function was also assessed by transendothelial 
electrical resistance (TEER) using an electric cell-substrate 
impedance sensor (ECIS), which can monitor the barrier 
integrity in real-time. There was a delay in reaching the same 
stabilized TEER in MIG6 knockdown cells compared with 
control counterparts before treatment with VEGFA (Sup-
plementary Fig. 2b). Upon VEGFA stimulation, the dis-
rupted endothelial barrier by weakened cell–cell junctions 
allowed the current (4000 Hz) to pass more freely through 
the layer, consequently leading to a more prominent decrease 
in electrical resistance in MIG6 knockdown cells (Fig. 1e). 
Together, these data demonstrated that MIG6 knockdown 
promotes EC permeability.

Fig. 2  MIG6 expression is 
induced by VEGFA and sup-
pressed by VEGFR2 inhibition 
in ECs. (a) VEGFA-induced 
MIG6 expression. Serum-
starved HUVECs were stimu-
lated with a different amount of 
VEGFA for 30 min. VEGFR2 
activation was monitored by 
phosphorylation of Tyr1175. (b) 
MIG6 induction was analyzed 
by densitometry and normal-
ized by tubulin. (c) Time kinetic 
assay of MIG6 induction in 
HUVECs. Serum-starved ECs 
were stimulated with VEGFA 
(20 ng/ml) for different time 
points. (d) MIG6 induction 
at different time points was 
measured by densitometry 
and normalized by tubulin. (e) 
HUVECs were treated with 
a VEGFR2 tyrosine kinase 
inhibitor Axitinib (10 nM) for 
3 h prior to VEGFA treatment 
(20 ng/ml) for 30 min. The 
diminished VEGFA-induced 
MIG6 expression is shown 
by western blot. (f) MIG6 
induction was quantified by 
densitometry and normalized by 
tubulin. Fold induction relative 
to the control is shown as the 
mean ± SEM (n = 3 for b, d, 
and f). Statistical significance 
was determined by one-way 
ANOVA with Sidak multiple 
comparison test. * p < 0.05, ** 
p < 0.01, *** p < 0.001, **** 
p < 0.0001, NS: not statistically 
significant
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MIG6 expression is upregulated by VEGFA 
and suppressed by VEGFR2 inhibition in endothelial 
cells

A number of growth factors including epidermal growth fac-
tor (EGF) and hepatocyte growth factor (HGF) have been 
reported to induce MIG6 (Pante et al. 2005; Zhang and 
Vande Woude 2007). However, it remains thus far unknown 
whether MIG6 is induced by VEGFA. In addition, given 
that vascular permeability is disrupted by Mig6 deficiency, 
we further investigated whether VEGFA can regulate MIG6 
expression. We found that MIG6 protein expression was 
increased in ECs upon VEGFA stimulation (Fig. 2a, b). In 
addition, VEGFA-induced MIG6 expression was confirmed 
by the time kinetic assay (Fig. 2c, d). Notably, MIG6 pro-
tein expression was promptly upregulated as early as 10 min 
after treatment with VEGFA and sustained up to 6 h. We 
then evaluated whether VEGFA-induced MIG6 expression 
requires VEGFR2 activation by treating cells with a VEGFR 
inhibitor Axitinib. VEGFA treatment induced MIG6 expres-
sion and increased VEGFR2 phosphorylation in ECs, but 

Axitinib treatment attenuated the VEGFA-induced MIG6 
induction and VEGFR2 phosphorylation, suggesting that 
VEGFR2 activation is required for MIG6 induction by 
VEGFA (Fig. 2e, f). Collectively, these data showed that 
MIG6 is induced as an early responder to VEGFA and its 
induction is decreased by VEGFR2 inhibition in ECs.

MIG6 binds to VEGFR2 in endothelial cells

It was reported that MIG6 binds to all four members of 
EGFR/ErbB and inhibits EGFR autophosphorylation in vitro 
(Anastasi et al. 2016; Xu and Li 2021). Moreover, MIG6 
binds to the EGFR kinase domain, which results in sup-
pression of EGFR kinase activity (Ferby et al. 2006; Hackel 
Peter et al. 2001). As MIG6 is induced by VEGFA in ECs, 
we tested whether MIG6 binds to VEGFR2 and affects its 
activation. To examine MIG6 binding to VEGFR2, GST-
MIG6 fusion protein was utilized (Liu et al. 2021). The GST 
pull-down assay revealed that MIG6 binds to the full-length 
VEGFR2 (Fig. 3a). Furthermore, we generated GST-fused 
VEGFR2 mutant proteins to determine the MIG6 binding 

Fig. 3  MIG6 binds to VEGFR2. 
(a) Association of MIG6 with 
VEGFR2 was assessed by GST 
pull-down assay, followed by 
western blot. (b) Schematic rep-
resentation of VEGFR2 protein 
domains and the truncated pro-
teins of GST-fusion VEGFR2 
domains. Y951, Y1054, Y1059, 
Y1175, and Y1214 are major 
tyrosine phosphorylation sites 
located in the indicated domains 
of VEGFR2. TM, transmem-
brane; JX, juxtamembrane 
domain; KD1, kinase domain 
1; KI, kinase insert domain; 
KD2, kinase domain 2; Cyto, 
whole cytoplasmic domain of 
VEGFR2; C-ter, C-terminus 
domain of VEGFR2 exclud-
ing JX, KD1, KI, and KD2. 
(c) Association of Flag-tagged 
MIG6 with truncated VEGFR2 
proteins was assessed by GST 
pull-down assay, displaying that 
MIG6 binds to the cytoplasmic 
domain and kinase domain 2 of 
VEGFR2. Inputs are shown on 
the right
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domain of VEGFR2 (Fig. 3b). The GST pull-down assay 
showed that Flag-tagged MIG6 protein binds to the entire 
cytoplasmic domain (Cyto) and tyrosine kinase domain 2 
(KD2) of VEGFR2, but not to juxtamembrane domain (JX), 
tyrosine kinase domain 1 (KD1), and kinase insert domain 
(KI) (Fig. 3c), suggesting that MIG6 may regulate critical 
activities of VEGFR2 by binding to the VEGFR2 KD2.

MIG6 knockdown increases VEGFR2 
phosphorylation and internalization in response 
to VEGFA

Given the MIG6 binding to VEGFR2, we explored VEGFR2 
phosphorylation changes in MIG6 knockdown ECs by 
employing phospho-specific VEGFR2 antibodies. We found 
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are upregulated in MIG6 knockdown ECs. (a, c) MIG6 knock-
down in HUVECs increases VEGFR2 phosphorylation on Tyr951 
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VEGFA (50  ng/ml) at 5 and 10  min. (b, d) Tyrosine phosphoryla-
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that MIG6 knockdown strongly enhanced VEGFR2 phos-
phorylation on Y951 and Y1054/9 upon VEGFA stimulation 
(Fig. 4a, b). Similarly, phosphorylation on Y1175 and Y1214 
was increased by VEGFA in MIG6 knockdown ECs (Fig. 4c, 
d). Furthermore, MIG6 overexpression in ECs decreased 
VEGFR2 phosphorylation in response to VEGFA (Sup-
plementary Fig. 3a-f). These data demonstrate that MIG6 
has an inhibitory effect on VEGFR2 phosphorylation and 
its kinase activity by binding to the KD2 of VEGFR2. Since 
MIG6 negatively regulates VEGFR2 phosphorylation, we 
assessed whether MIG6 also affects VEGFR2 internalization 
which can regulate vascular permeability due to its close 
association with maximal VEGFR2 activation and signaling 
(LeBlanc et al. 2019; Tian et al. 2016). To address this, we 
used an antibody feeding assay in which the extracellular 
domain of VEGFR2 is labeled with an antibody to enable 
the visualization of VEGFR2 endocytosis and trafficking. 
MIG6 knockdown ECs showed an increase in VEGFA-
induced VEGFR2 internalization (Fig. 4e, f). This finding 
was also supported by a biotinylation assay for VEGFR2 
internalized from the cell surface (Supplementary Fig. 4), 
demonstrating that VEGFA-induced VEGFR2 internaliza-
tion in ECs is enhanced by MIG6 knockdown.

MIG6 knockdown activates the signaling axis 
of PLCγ1‑Ca2+‑eNOS and disrupts the balance 
of RAC1/RHOA GTPase activation

Various signaling molecules including PLCγ1, eNOS, and 
RhoGTPases are implicated in the regulation of vascular 
permeability (Chen and Simons 2021; Flentje et al. 2019; 
Shu et al. 2015). Given that VEGFR2 phosphorylation on 
Y1175 is increased by MIG6 knockdown, we examined 
PLCγ1 and eNOS phosphorylation to determine whether 
MIG6 affected the signaling axis of PLCγ1 and eNOS to 
cause an increase in VEGFA-induced vascular permeabil-
ity in MIG6 knockdown cells. PLCγ1 phosphorylation in 
response to VEGFA was further increased in MIG6 knock-
down cells (Fig. 5a, b), and consequently, cytosolic  Ca2+ 
level was transiently elevated (Fig. 5c). We also found that 
MIG6 knockdown markedly increased the phosphorylation 
of eNOS (Fig. 5d, e), which was reversed by co-depletion of 
PLCγ1 (Fig. 5f, g). Consistently, pretreatment with a PLCγ1 
inhibitor U73122 or an eNOS inhibitor L-NAME signifi-
cantly attenuated the increase of VEGFA-induced perme-
ability in MIG6 knockdown cells (Fig. 5h, i). Taken together, 
these data establish the role of the PLCγ1-Ca2+-eNOS axis 
in MIG6-mediated regulation of vascular permeability in 
response to VEGFA.

The integrity of EC barrier is maintained by the fine bal-
ance between RHOA and RAC1 activation (Pronk et al. 
2019; Radeva and Waschke 2018). When RHOA activation 
is increased but RAC1 activity is antagonized, this alteration 

leads to junction destabilization and consequent increase in 
endothelial permeability. We therefore asked whether MIG6 
knockdown compromised the endothelial barrier by modu-
lation of RAC1 and RHOA activation. VEGFA-induced 
RAC1 activation was found to be decreased but RHOA acti-
vation was markedly increased in MIG6 knockdown ECs 
(Fig. 6a–d). Furthermore, augmentation of RAC1 activity 
by lentiviral overexpression of constitutively active RAC1 
(Q61L) mutant (Burstein et al. 1998) in MIG6 knockdown 
cells significantly reduced VEGFA-induced permeability to 
the level of control knockdown cells (Supplementary Fig. 5). 
These results demonstrate that MIG6 knockdown may dis-
rupt the endothelial barrier function by perturbing the bal-
ance between RAC1 and RHOA activation.

Discussion

Abnormal blood vessel growth with vascular hyperpermea-
bility promotes the development of neovascular diseases. An 
increase in vascular permeability precedes the onset of neo-
vascularization and is a hallmark of pathological angiogen-
esis (Bates 2010). Previously, we found that Mig6 knockout 
mice displayed increased blood vessel density and number 
of branch points in the retinae, demonstrating an anti-angio-
genic effect of Mig6 in neovascularization (Liu et al. 2021). 
However, it remains unknown whether MIG6 regulates 
vascular permeability. In this study, we showed that vas-
cular permeability was increased in Mig6 knockout mice 
and MIG6 knockdown elevated VEGFA-induced endothe-
lial barrier breakdown in vitro. At the molecular level, we 
found that MIG6 was induced by VEGFA and bound to the 
VEGFR2 kinase domain 2, which blocked VEGFA-induced 
VEGFR2 phosphorylation. We also revealed that the sign-
aling axis of PLCγ1-Ca2+-eNOS was further activated and 
contributed to the endothelial barrier disruption upon MIG6 
knockdown in ECs.

Vascular permeability is greatly increased in diverse 
pathophysiological conditions such as inflammation, wound 
healing, and cancers (Claesson-Welsh et al. 2021; Dvorak 
2019; Hellenthal et al. 2022). Accordingly, endothelial bar-
rier functions are regulated by various permeability inducers 
including histamine, thrombin, and VEGFA, depending on 
the pathophysiological contexts (Park-Windhol and D'Amore 
2016; Wautier and Wautier 2022; Wettschureck et al. 2019). 
The early onset osteoarthritis condition observed in Mig6 
knockout mice (Zhang et al. 2005) suggested the possibil-
ity that inflammatory conditions may be driven by Mig6 
deficiency and be involved in the development of the joint 
disease and the minor increase in vascular leakage in the 
absence of external stimuli; however, no significant infil-
tration of inflammatory cells was observed in the diseased 
joints of the mice and further ablation of Rag2 gene did 
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not rescue the joint phenotype of the Mig6-deficient mice 
(Zhang et al. 2005). This suggests that inflammatory condi-
tions and the immune system may not be critically involved 
in the increased basal permeability observed in Mig6 
knockout mice. Consistent with the notion, we found that 
histamine-induced permeability was not affected by MIG6 

knockdown in ECs. Another relevant phenotype displayed by 
the Mig6-deficient mice with regard to vascular permeability 
is that these mice show pro-angiogenic characteristics dem-
onstrated by the increased blood vessel density and branch 
points in the retinae (Liu et al. 2021). As regulation of vas-
cular permeability is closely associated with angiogenic 

a b

VEGFA - + - +
siMIG6

siControl

pPLCγ1

PLCγ1

MIG6

Tubulin

- 150

- 150

- 50

- 50

c

d e

f g

5000

10000

15000

20000

0 5 10 15 (min)

R
el

at
iv

e 
flu

or
es

ce
nc

e 
un

it

siControl
siMIG6

* *
*

0

siControl
siMIG6

p-
eN

O
S/

eN
O

S
(fo

ld
 in

du
ct

io
n)

*

h

kDa

(min)

VEGFA 0 010 30

siControl
10 30

siMIG6

p-eNOS

eNOS

MIG6

β-actin

- 50

- 37

- 150

- 150

kDa

(min)

0 10 30 10VEGFA 0 30

*
*

**

VEGFA

VEGFA 0 10 30 (min)0 10 30 0 10 30 0 10 30

p-eNOS

eNOS

MIG6

Tubulin

PLCγ1

siControl
siMIG6

siPLCγ1
siMIG6 +

siPLCγ1

- 50

- 50

- 150

- 150

kDa

- 150

 Control

Vehicle

siRNA  ControlMIG6 MIG6

U73122

0

200

400

600

BSA
VEGFA

****

********
***

***

****

Fl
uo

re
sc

en
t c

ou
nt

NS

0

100

200

300

400

Fl
uo

re
sc

en
t c

ou
nt

 Control

Vehicle

siRNA  ControlMIG6 MIG6

L-NAME

BSA
VEGFA

****

NS

****

****
****

****

*

**** ****

i

0

1

2

3

4
NS

0

1

2

3

4

(min)0 10 30 10VEGFA 0 30 0 10 30 100 30

p-
eN

O
S/

eN
O

S
(fo

ld
 in

du
ct

io
n)

siControl
siMIG6

siMIG6 + siPLCγ1
siPLCγ1

**
*

*
**

***

0

4

8

12

siControl
siMIG6

VEGFA - + - +

**

**

pP
LC

γ1
/P

LC
γ1

(fo
ld

 in
du

ct
io

n)



161Critical role of mitogen‑inducible gene 6 in restraining endothelial cell permeability to…

1 3

processes implicating VEGFR2 activation and the signaling 
pathways leading to different VEGFR2-mediated biological 
effects often overlap or crosstalk with each other (Claesson-
Welsh et al. 2021; Simons et al. 2016), it is highly likely that 
anti-angiogenic functions exerted by MIG6 can impact on 
VEGFA-induced vascular permeability as well. The delay 
in reaching the same TEER in MIG6 knockdown cells 
compared with control counterparts may reflect the effect 
of altered angiogenesis on vascular permeability although 
the underlying mechanisms remain to be elucidated. We 
previously demonstrated that anti-angiogenic functions 
of MIG6 are mediated by binding to SHC1 and restrain-
ing its phosphorylation (Liu et al. 2021). Given that SHC1 
is a common adaptor protein transducing diverse signals 
derived from activation of many receptor tyrosine kinases 
including VEGFR2 (Oshikawa et al. 2012; Wills and Jones 
2012) we attempted to examine whether SHC1 depletion 
affects VEGFA-induced vascular permeability and how this 
would alter the increased permeability observed in MIG6 
knockdown cells. Both single SHC1 knockdown and double 
SHC1/MIG6 knockdown ECs showed a comparable increase 
in permeability to the level of single MIG6 knockdown cells 

Fig. 5  MIG6 knockdown activates PLCγ1-Ca2+-eNOS signaling and 
VEGFA-induced increase of permeability by MIG6 knockdown is 
attenuated by PLCγ1 and eNOS inhibitors. (a) Western blot analy-
sis of PLCγ1 phosphorylation on Tyr783 in siControl and siMIG6-
treated ECs in response to VEGFA (50 ng/ml) at 10 min. (b) PLCγ1 
phosphorylation on Tyr783 was analyzed and normalized by total 
PLCγ1 (n = 4). (c) Intracellular  Ca2+ level in serum-starved ECs 
treated with siControl and siMIG6 was determined in response to 
VEGFA (20  ng/ml) at various time points (n = 3). (d) Western blot 
analysis of eNOS phosphorylation on Ser1177 in ECs treated with 
siControl and siMIG6, after treatment with VEGFA (50  ng/ml) 
for 10  min and 30  min. (e) eNOS phosphorylation on Ser1177 was 
analyzed and normalized by total eNOS (n = 3). (f) Western blot 
analysis of eNOS phosphorylation on Ser1177 in ECs treated with 
siControl, siMIG6, siPLCγ1, and siMIG6 + siPLCγ1, followed by 
treatment with VEGFA (50 ng/ml) for 10 min and 30 min. (g) eNOS 
phosphorylation on Ser1177 was analyzed and normalized by total 
eNOS (n = 3). (h, i) VEGFA-induced permeability was measured in 
siControl or siMIG6 knockdown ECs treated with a PLCγ1 inhibi-
tor (U73122, 3  μM) for 30  min or an eNOS inhibitor (L-NAME, 
300  μM) for 1  h prior to VEGFA (50  ng/ml) treatment (n = 4 for 
h; n = 5 for i). Statistical significance was determined by one-way 
ANOVA with Sidak multiple comparison test (b, e, and g), paired 
Student’s t-test (c), and two-way ANOVA with Tukey multiple com-
parison test (h, i). Data are presented as mean ± SEM. * p < 0.05, ** 
p < 0.01, *** p < 0.001, **** p < 0.0001, NS: not statistically signifi-
cant
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way ANOVA with Sidak multiple comparison test was performed (b, 
d). Data are presented as mean ± SEM (n = 3 for b, d). * p < 0.05, ** 
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upon VEGFA stimulation (data not shown). At present, we 
are unable to interpret this observation clearly, but we specu-
late that the permeability changes in SHC1 knockdown cells 
may reflect an effect of more complicated and fundamen-
tal alterations in signaling due to the depletion of SHC1, 
a common signal transducer for tyrosine kinase receptors. 
Nonetheless, this suggests that VEGFA-induced regulation 
of vascular permeability may be significantly affected by the 
complex interplay among signaling molecules and pathways 
involved in other VEGFR2-mediated biological effects.

We showed for the first time that MIG6 regulates 
VEGFR2 phosphorylation by binding to VEGFR2 kinase 
domain 2. Depletion of MIG6 in ECs significantly increased 
VEGFA-induced phosphorylation at multiple sites of 
VEGFR2, indicating that various biological events medi-
ated by VEGFR2 phosphorylation might be affected by 
MIG6 knockdown. The effects of MIG6 on phosphoryla-
tion of multiple tyrosine residues were also observed in the 
case of EGFR in which the first segment (337Ser-361Ser) 
of EGFR binding domain (EBD) in MIG6 was proposed to 
bind the EGFR kinase domain (Xu and Li 2021; Zhang et al. 
2007) and MIG6 overexpression attenuated the phosphoryla-
tion of Tyr1068 and Tyr1173 on EGFR (Bellini et al. 2020; 
Descot et al. 2009; Liu et al. 2012). Given the regulatory 
role of MIG6 in the overall phosphorylation of these recep-
tor kinases, it is possible that any biological effect observed 
in MIG6 knockdown cells may derive from a combination 
of signaling pathways involving multiple phosphorylation 
sites of the receptor. Nevertheless, some phosphorylation 
sites appear to have more defined functions and signal-
ing pathways leading to the biological effect (Koch et al. 
2011; Wang et al. 2020). For example, Tyr1175 (Y1175) 
is a major phosphorylation site on VEGFR2 to activate 
PLCγ1 (Takahashi et al. 2001). The signaling cascade of 
VEGFR2-PLCγ1-Ca2+-eNOS is a crucial pathway to control 
endothelial barrier function (Dalal et al. 2020; Dragoni et al. 
2021; Wu et al. 1999). In addition, phosphorylated Y1175 
(pY1175) of VEGFR2 binds to SHC1, SHB, and SCK to 
activate further downstream signaling (Holmqvist et al. 
2004; Warner et al. 2000), and has been proposed to play a 
critical role in VEGFA-induced vascular hyperpermeability 
(Hendel et al. 2014; Kim et al. 2019; Yang et al. 2017). In 
this study, we demonstrated that VEGFA further increased 
VEGFR2 phosphorylation on Y1175 that augmented PLCγ1 
activation in MIG6 knockdown cells. Furthermore, PLCγ1 
inhibition attenuated VEGFA-induced permeability in MIG6 
knockdown cells and PLCγ1 depletion in MIG6 knock-
down cells significantly decreased eNOS phosphorylation 
in response to VEGFA. These results altogether support the 
role of pY1175 in mediating the effects of MIG6 knock-
down on the increased permeability at least in part. Further-
more, as a small signaling mediator,  Ca2+ is an important 

signaling effector which affects vascular permeability (Wu 
et al. 1999). VEGFA-induced acute vascular leakage was 
associated with upregulation of PLCγ1 phosphorylation 
and eNOS phosphorylation by transiently increased intra-
cellular calcium concentration  ([Ca2+]i) (Dalal et al. 2020). 
VEGFA-induced vascular permeability implicates increased 
eNOS activity, and phosphorylation of eNOS at several sites 
is critical for the eNOS activity to regulate endothelial bar-
rier function (Shu et al. 2015). Consistent with our results 
regarding the involvement of pY1175 VEGFR2 in the regu-
lation of vascular permeability upon MIG6 depletion, the 
transient increase of  [Ca2+]i was markedly augmented by 
VEGFA-induced PLCγ1 phosphorylation, which in turn led 
to the robust phosphorylation of eNOS. In this study, we 
have presented the pY1175 VEGFR2-PLCγ1-eNOS axis as 
one of the major signaling pathways affected by MIG6 sta-
tus regarding vascular permeability among diverse VEGFR2 
activation-mediated biological events. Given the multiple 
molecules involved in the regulation of vascular permeabil-
ity (Claesson-Welsh et al. 2021; Komarova et al. 2017), it 
would be interesting to investigate the function of MIG6 
in other VEGFR2-mediated signaling pathways to clearly 
define the downstream pathways contributing to MIG6 
deficiency-driven alteration of endothelial barrier function.

In summary, we demonstrate that MIG6 deficiency 
increases VEGFA-induced vascular permeability in vivo 
and disrupts endothelial barrier integrity in vitro. We also 
unraveled that MIG6 regulates vascular permeability by 
binding to VEGFR2 kinase domain 2, which involves the 
signaling cascade of PLCγ1-Ca2+-eNOS and perturbation of 
RAC1/RHOA activation upon MIG6 deficiency to result in 
disrupted endothelial barrier (Fig. 6e). Therefore, our find-
ings support the critical function of MIG6 in the homeo-
stasis of vascular permeability by antagonizing VEGFR2 
activation and downstream signaling pathways, with an 
implication of MIG6 as an applicable target for modula-
tion of VEGFA-induced permeability under pathological 
conditions.
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